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1959) only the average-mult iple  tes t  (Wilson, 1950) 
can be applied when the  mater ia l  consists of a toms of 
different  weights. Moreover, the  scope of the  la t te r  
tes t  is fa ir ly  restr ic ted because i t  cannot  be used to 
detect  centres of s y m m e t r y  - -  except,  sometimes, 
indirect ly  - -  and  because it involves types  of re- 
flexions which are f requent ly  too small  in number  
to give s tat is t ical ly significant results. 

Wherever  possible, moment  tests  - -  and,  indeed, 
other  s tat is t ical  tests  - -  should be performed with 
three-dimensional  (hkl) reflexions ra the r  t han  re- 
flexions with one or two indices zero. The larger 
number  of reflexions avai lable permits  more reliable 
s tat is t ical  averaging;  in addit ion,  the  results are less 
l ikely to be seriously influenced by  hype r symmet ry ,  
by the overlap of a toms in project ion and by  the  
inadequate  s tat is t ical  averaging which m a y  occur if 
a heavy  a tom happens to fall, in projection, near  a 
special position. 

When  present,  h y p e r s y m m e t r y  invar iab ly  increases 
the  moments  of cent rosymmetr ica l  s tructures,  but  
since s ta t is t ical  tests  are usual ly made  on unknown 
s t ructures  it  is, in general,  impossible to allow for 
h y p e r s y m m e t r y  quant i ta t ive ly .  

Overlap m a y  raise or lower moments ,  depending 
upon the  space group, bu t  the errors which it intro- 
duces are likely to be impor t an t  only with one- 
dimensional  da ta ,  or two-dimensional  da t a  from 

crystals  with uni t  cells containing a small  number  
of a toms or one very  heavy  atom. 

We should like to t h a n k  Piof.  H. Lipson for his 
continual  interest ,  and he and  ~ S. K.  K u m r a  for 
making  available to us unpubl ished da t a  on monoclinic 
sodium alum. 
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The Secondary Extinction Correction 
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I t  is shown that  Darwin's formula for the secondary extinction correction, which has been univer- 
sally accepted and extensively used, contains an appreciable error in the X-ray diffraction case. 
The correct formula is derived. 

As a first order correction for secondary extinction Darwin showed that  one should use an effective 
absorption coefficient/t +gQ where an unpolarized incident beam is presumed. The new derivation 
shows tha t  the effective absorption coefficient is tt +2gQ(1 +cos 4 20)/(1 +cos 2 20) 2, which gives 
#+gQ at  0 = 0  ° and 0=90  ° , but  #+2gQ at 0=45  ° . 

Darwin's theory remains valid when applied to neutron diffraction. 

I n t r o d u c t i o n  

The effect of secondary ext inct ion on the in tegra ted  
in tens i ty  of X - r a y  diffract ion in mosaic crystals  was 
f irs t  s tudied in detai l  by  C. G. Darwin  (1922), and the 
formulas  derived by him have  been used extensively 
th roughout  the last  fo r ty  years.  

Recent ly  this wri ter  found t h a t  the Darwin  equa- 
tions did not  give agreement  with precise in tensi ty  
measurements .  As a consequence a reexamina t ion  of 

the  theory  was under taken.  I t  was found t h a t  the  
polar izat ion of the X - r a y  beams was incorrect ly t rea ted  
in Darwin ' s  paper  and  in all subsequent  theoret ical  
work on secondary extinction.  The correct formulas  
have been derived and have  been found to give 
agreement  with experiment .  Since the new theoretical  
t r e a t m e n t  of secondary extinction requires significant 
modifications of equat ions in general use, the results  
of the  reexaminat ion  will be given in some detail  in 
the present  article. 

A C 16 -- 74 
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1. The  ideal mosa ic  c rys ta l  

I t  is convenient first to review well known results for 
X-ray diffraction in the ideal mosaic crystal. Through- 
out the article it  will be assumed tha t  all observations 
are made in the equator plane, i.e. the plane containing 
directions of incidence and diffraction. 

If the incident beam is linearly polarized, one must 
specify the polarization angle ~ which the electric 
vector makes with the normal to the equator plane. 
For general polarization one needs to know the inten- 
s i ty distribution S0(q)d~o, the integral over which 
gives the total  incident intensity. I t  is permissible 
to resolve the electric vector into normal (q=0)  and 
parallel ( ~ =  ~/2) components and to set for the total  
incident intensity Io=Io(O)+S0(~/2). 

When the incident beam is linearly polarized at  
angle q, it  follows tha t  I0(0)=Io cosZ~ and I0(~/2)= 
I0 sin ~' ~. For an unpolarized incident beam Io(O)= 
I0(g/2) = ½S0, and when the incident beam is produced 
by reflection under a glancing angle 00 from a mono- 
chromator crystal (in the same equator plane) one has 

Io(0)=Io/(1 +cos 2 200) and 
So(~/2) =So cos 2 200/(1 + cos 2 200). 

The total  diffracted power, (~R(~o), due to a crystal 
of volume ~ V, so small tha t  all power losses are neg- 
ligible, is 

~R0@) = I0(~0)Q(~)~ V 
Q(~) = Q(o) {cos ~ ~ + sin e ~ cos 9 20} 

Qo = Q(O) = [Ne2F/mc21]L3/sin 20.  (1) 

For an unpolarized incident beam equation (1) takes 
the form 

5Ro = IoQopl ~ V 
pl = ( l + c o s  9' 20)/2, (la) 

and this equation will be valid also for monochro- 
matized incident beams if pl is replaced by p~, where 

p~ = (1 + cos 2 200 cos 2 20)/(1 + cos 2 200) . (lb) 

Power losses due to diffraction are by definition 
negligible in the ideal mosaic crystal. Integrating 
equation (1) and taking account of ordinary absorption 
one finds 

R0(~) = s0(~)¢(~)VA ([~) 
(~) = V-1 1 exp [ -# (TI+T2)]dV.  (2) A 

V is the irradiated volume of the crystal, and A is 
the transmission factor. For an unpolarized incident 
beam 

Ro = IoQo VA pl (2a) 

where pl must be replaced by p~ if a monochromator 
is used. 

I t  is useful to list the specific form of equation (2a) 
for symmetrical diffraction by a plane parallel plate 

of thick_uess To which completely covers the incident 
beam. These equations are: 

Laue case 
Ro = PoQoplT exp (- /~T) 
T = To/cos 0 , (2b) 

Bragg case,/~T0 >> 1 

Ro = PoQopl/2~ , (2c) 

where Po=SIo is the total power of the incident 
beam, S being its cross section. 

2. Secondary extinction 

The equations given in § 1 are obviously approxima- 
tions since the X-ray beams in traversing the crystal 
must lose some power through the diffraction process. 

In part  A of this section the exact solution to the 
diffraction problem in a plane parallel plate will be 
given, while in part  B an approximate solution will 
be derived for the general case of arbi t rary crystal 
shape. 

Let W(AI) be the distribution function which charac- 
terizes the misalignment of the mosaic blocks in the 
crystal specimen, A being the angular deviation from 
the mean. The considerations will be restricted to the 
case of small secondary extinction, implying tha t  the 
width of W is large compared to the width of the 
diffraction peak for a single mosaic block. 

Suppose tha t  the incident direction makes a sharply 
defined glancing angle 0 with the mean orientation 
of a lattice plane for which the ideal Bragg angle 
is 0s. The expectation value for the power diffracted 
by a volume element is then 

dP(O, ~)=I0@)a@, O)dV 

~@, 0)= w(o~-o)Q(~), (3) 

where P and Io are measured at  the volume element. 

2A. The plane parallel plate 

The diffraction problem for the plane parallel plate 
was investigated and solved by C. G. Darwin (1922). 
A somewhat different derivation, which led to identical 
results, was later made by this writer (Zachariasen, 
1945). However, both of these workers made the same 
error in taking account of the polarization of the 
incident beam. 

The derivation to follow will adhere closely to tha t  
previously given by the writer, except that  the error 
will be corrected and the notation modified. (The 
symbols ?a ,  T, P0, P of the earlier work correspond 
to the quantities a(~), yT, P0@), P(~) as used in the 
present article. A prefix Z is used in references to 
equations given in the earlier publication.) 

The equations which P0(~, T) and P(~, T) must  
satisfy are (see Z4-21) 

dPo = - [ #  + a@)]P0 dT + a@')PdT 

dP = ~ [# + a(cf')]PdT + a@)PodT. (4) 
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In these equations T is the distance of travel of the 
incident beam into the crystal. The upper sign refers 
to Laue and the lower sign to Bragg reflection. The 
terms involving a(9') correspond to diffraction of the 
diffracted beam, so that  9 and 9' are related as follows 

cos 9 ' =  cos 9/[cos2 9 + sine 9 c°se 20]½. (5) 

Thus 9 ' - -9  only when 9 = 0  or ~/2, i.e. for normal 
or for parallel linear polarization of the incident 
beam. 

Equations (5) have been solved exactly for the 
case 9 ' = 9  (see Z4.24-30), and these solutions are: 

Laue case 

P=Po exp [ - ( # +  ~)T] sinh (aT) , 
P = PoT exp ( - #T) [ a -  a2T + ~ ante + . . .  ] , 

T = T0/cos O, (6) 

Bragg case, #T0 >> 1 

P = P0 [# + a -  {(# + a)e _ a2}½]/a, 
P=P0(2#)-1[~ - a e / 2 # + 5 ~ a / 8 # 2 + . . . ] .  (7) 

I t  must be remembered that  P, Po, a in equations 
(6) and (7) refer either all to 9 = 0 ,  or all to 9=~/2 ,  
and that  a is a function of 0, a having appreciable 
value only for 0 ~ 0B. 

I t  is convenient to use new symbols R, gn, pn and 
! 

Pn defined as follows 

R = I Pa(O-O ), g. = I w . a ( o - o . ) ,  
Pn ---- (1 + COS en 20)/2, 
p~ = (1 + COS 2 200 COS ~~ 20)/(1 + cos 2 20o) (8) 

where one notes that  gl = 1, and that  pl and p~ agree 
with previous definitions. 

Integration of equations (6) and (7) and addition 
of normal and parallel components give as result 

R/Po= Ro/Po[1 -o¢2(Ro/Po) +c~a(Ro/Po) 2 + . . . ] .  (9) 

Ro/Po are the quantities given by equations (2b) and 
(2c) while 

Laue case :Bragg case 

a2= g2(p2/p~) exp (#T) 292(p2/p~) 
c¢~= (-~-)ga(ps/p~) exp (2#T) 5ga(p3/p~) . (9a) 

For the monochromator case p~ everywhere replaces 
pn in the above equations. 

The previous treatments by Darwin and this writer 
gave the results of equation (9a) if one sets p2/p~= 
ps/p~= 1. However, this is not permissible for p2/p~ 
increases from 1 at 20 =0  to 2 at 20=g/2,  pa/p~ from 
l t o 4 .  

2B. Arbitrary crystal shape 
In the following an approximate solution, good to 

the first order correction term, will be given for a 
crystal of any shape. The approximation to be made 
is this: for X-ray beams traversing the crystal power 

losses due to absorption and diffraction are considered, 
but power gains from double diffraction are neglected. 
I t  is thus assumed that  

dPo(9)= - [ #  + a(9)]PodT 
dP(9 ) = - [# + a(9 ' ) ]PdT.  (10) 

In other words terms in a 2 are neglected. 
If the considerations are restricted to either normal 

or parallel linear polarization, the integration of 
equations (10) gives 

P = I o a V A  (#+ a). (11) 

In the X-ray case # > ~ so that  

A (# + ~) ~ A + adA/d/u. (12) 

where it is senseless to include quadratic terms since 
in equation (i0) such terms were neglected. 

Integration of equation (l l) and addition of normal 
and parallel components give 

R/Io "~ Ro/Io[1-ocRo/Io] 
a=S-lo~2=g2(p2/p~) V- ldA*/d# . (13) 

Ro/Io is given by equation (2a), A * = A - 1  is the 
absorption factor, and S is the cross section of that  
part of the incident beam which falls on the crystal. 
Again p~ replaces pn if a monochromator is used. 

I t  is readily .verified that  equation (13) correctly 
gives equations (9) (to the first order expansion terms) 
when applied to a plane parallel plate. 

Letting Q=Qopl equation (13) can be rewritten in 
the form 

.R = IoQ VA ( y )  (13a) 

#' = # +g2(pe/p~)Q (lab) 

where equation (13b) is the correct form for the old 
Darwin relation # '  = #  + g2Q. 

Since intensity measurements are usually made on 
relative rather than absolute scale, it is useful to use 
equation (13) in the form 

Fcorr ~ KFobs[1 + ~3(co)C Jobs] • (14) 

Fobs is the observed structure factor, Fcorr the value 
corrected for secondary extinction, and Job~ the 
observed integrated intensity on arbitrary scale. 
K and C are scale factors to be adjusted, while fl(20) 
takes account of the angular variation of the extinc- 
tion correction and is assumed to be normalized to 
unity at 20 = 0. 

For an unpolarized incident beam the expression 
for /3(20) is 

2(1 + cos a 20) A*' (20) 
/3(20) = (1 +cos 2 20) 2. A*'(0) (15) 

where A*'(20) is the value of dA*(d,a at 20 and 
A*'(0) the value at 20=0.  

When a monochromator is used the expression for 
/3(20) becomes 
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~ ' ( 2 0 )  = 
(1 + cos 2 200) (1 + cos 2 200 cos 4 20) A*' (20) 

(1 +cos ~ 200 cos 2 20) ~ A*'(0) 
(15a) 

2"°° r , I I -I 

"'°F / 
I /// \ \ ~ ~,.o j 

0.5 

F 
0 45 oj 90 ° l  i J5" ~1~0 ° 

2 0 - - - )  

Fig. l .  Variation of/~ w i t h  scattering angle  for  a crystal sphere 
of radius r, for selected values of/~r. 

Fig. 1 shows fl as function of the scattering angle 
for a crystal sphere of radius r bathed in the incident 
beam for various values of #r. It  is clearly illustrated 
that  one cannot regard fl as independent of scattering 
angle, as is usually assumed. For large values of/~r 
for a crystal sphere one has fl(O)/fl(ze)=~(#r) ~. 

Equation (14) is probably a good approximation 
even for flCJ ~ 1, at small scattering angles and small 
values of #r or #T0. 

Consider the Laue and Bragg cases for which the 
second order correction terms have been given. 
Inversion of equation (9) gives 

Ro/Po~ R/Po[l +~x2(R/Po)+(2a~-as)(R/Po)2]. (I6) 

Under the stated conditions one finds: 

L a u e  c a s e  

o 2 Ro/Po ~ R/Po[1 +ggR/Po+(2g;.--~g3)(R/Po)~] . (17) 

Bragg case 

Re~Re ~-, R/Po[I + 2g2R/Po+ (Sg~-5g3)(R/Po)2] . (18) 

The approximation 

Fcor~ ~ Fobs[1 + CJ] (19) 

(note that  fl ~ 1 for small 20 and #T) is thus good to 
second order if the brackets on the right 0i equations 
(17) and (18) are perfect squares. This requires 

Laue case g3 =g~21/16 = 1-31g~ 
Bragg case ga=g~ 7/5 =I.40g~. (20) 

I t  is reasonable to suppose that  W(A) is an error 
function, and if so by equation (8), gs = g.~2 (3)-½ = 1.15g~. 
Thus the conditions of equation (20) are nearly 
fulfilled, and it appears that  equation (19) can be 
used with some confidence even when C J ~  1. 

Hamilton (1957) has made a detailed study of the 
effect of crystal shape on secondary extinction and 

outlined a practical method for numerical solution 
of the problem. In the approximate solution of this 
paper the crystal shape effect is contained in the term 
dA*/dt~ of equation (13). Hamilton's results are valid 
for neutron diffraction; but in the case of X-ray 
diffraction the normal and parallel components must 
be considered separately and the components added 
at the end of the process. Thus the modifying factors 
pn/p'~ will again enter, although implicitly. 

3. Exper imenta l  verification of the 
new formula  

Experiments by the Manchester school of crystMlo- 
graphers during the nineteen twenties supposedly 
confirmed the Darwin formula for secondary extinc- 
tion which is now known to be in error. (A good 
survey of this work is given by James, 1950.) How- 
ever, in the Manchester experiments intensities were 
measured with adequate precision only at small 
scattering angles, so that  no real test was made of a 
possible dependence of the extinction coefficient on 
scattering angle. 

The new formula for secondary extinction derived 
in this paper ought to be checked by means of ex- 
periments carefully designed for this very purpose. 
This has not yet been done. 

However, it was related in the introduction that  
the reexamination of the theory of secondary extinc- 
tion was undertaken because discrepancy was observed 
between Darwin's formula and experimental results. 
The specific case of disagreement was the set of 
carefully measured integrated intensities for a crystal 
of Be2BOs(OH), the mineral hambergite. 

This crystal is of great hardness, so that  the thermal 
intensity attenuation is small. The intensities were 
measured with a proportional counter, Cu Kc¢ radia- 
tion with unpolarized incident beam and a perfect 
crystal sphere for which ,ur = 0.69. Under the circum- 
stances strong reflections were observed over the 
entire scattering range. I t  was quickly apparent that  
there was considerable secondary extinction in the 
specimen in spite of surface grinding and thermal shock 
treatment in liquid nitrogen. 

A very precise determination was made of the 24 
positional degrees of freedom in the structure and of 
the 42 thermal parameters (the anisotropic coefficients 
£or all but the hydrogen atoms) by means of least- 
square refinements based on the weak reflections for 
which secondary extinction is negligible. The structure 
factors corresponding to strong reflections, which 
were not used in the refinement, could thus be cal- 
culated with high accuracy. I t  was found, however, 
that  the application of a secondary extinction correc- 
tion to the strong reflections in accordance with the 
Darwin formula led to discrepancies of systematic 
nature. 

Table 1 gives the observed integrated intensities 
(on arbitrary scale), the experimental and calculated 
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Table 1. HKO reflections 
H K O  Jobs  /~obs ~h-~corr K F c a l c  
020 36 4"8 5-6 - -4"6  
200 44 5"9 6"2 5"5 
210 458 20"0 30"1 --  30-5 
220 976 32"0 66"3 - -61"7  
230 1034 36"8 78"8 --  74" 1 
040 489 25.7 39"5 -- 40"7 
240 229 19"4 24"2 - -23"8  
400 196 18.7 22.7 - -22 -3  
410 687 35"4 62"2 -- 62" 1 
420 97 13"8 15.2 -- 14.4 
250 314 25"4 34"2 - -31"9  
430 101 14.8 16-5 15.0 
060 211 21.8 26.9 25"9 
440 316 27"9 37"7 37"0 
260 46 10"8 11"3 10"4 
450 445 35"3 54"3 51"9 
270 192 24"0 29"8 28.2 
600 106 18"0 20"4 20"5 
610 91 16.8 18"8 - -18"3  
620 109 18"7 21"3 - -21 .1  
460 64 14-4 15.6 14.8 
080 314 32"3 45"8 - - 4 6 . 7  
630 72 15.6 17"1 16"2 
280 13.5 6"9 7 '0  - -6 .1  
470 13"7 7-2 7"3 6"3 
640 132 21"9 26.0  25-3 
650 15.2 7.7 7.9 - - 7 . 2  
290 0.3 1.2 1.2 1.2 
480 172 26.6 33.8 - - 3 3 . 7  
660 287 34.7 50-7 51.4 

0,10,0 130 23.8 28.7 29.7 
800 0.6 1.6 1.6 1.9 
810 50 14.9 16.1 16.4 
820 12.8 7.5 7.7 - - 7 . 5  
670 272 34.8 50.9 - - 5 0 . 6  
490 182 28-4 37-2 37-6 

2,10,0 167 27.3 35.1 35.3 
830 129 24.1 29.4  30.9 
840 71 17.9 20.1 - - 2 0 . 8  
680 99 21.3 24.9 -- 24.9 

H K O  Jobs  Fobs  Feor r  K-Foal e 

4,10,0  20"8 9"7 10"0 - -9"7  
850 5.1 4.8 4.8 - - 4 . 5  

2,11,0 147 25.8 32-2 - -35-1  
860 49 14.8 15.9 --  16.0 
690 2.0 3.0 3.0 2.7 

0,12,0 0.6 1.7 1-7 1.3 
4,11,0 1.1 2.2 2.2 --  1.6 

870 64 16.5 18.1 --  18.8 
2,12,0 0.1 0-7 0.7 0.3 
6,10,0 30.1 11-1 11.5 -- 11.9 
10,0,0 36.1 12.1 12.7 12.3 
10,1,0 74 17-3 19.0 -- 19.0 
10,2,0 54 14.6 15.7 15.9 

880 0.2 0.9 0.9 0.8 
10,3,0 1.0 2.0 2.0 1.3 
4,12,0 4.7 4.2 4.2 - - 3 . 5  
10,4,0 18.3 8.1 8.3 - - 8 . 0  
2,13,0 19.7 8.3 8.5 - - 8 . 6  
6,11,0 ]3 .4  6-8 6.9 6.4 

890 2.5 2.9 2.9 - - 2 . 2  
10,5,0 44 12-0 12.5 12.5 
10,6,0 85 15.6 16.9 --  17.0 
4,13,0 85 15-4 16.7 --  17.0 
0,14,0 376 32-0 43-1 --  43-8 
8,10,0 62 12.7 13.5 13.5 
6,12,0 0.1 0.6 0-6 0.5 
2,14,0 43 10-3 10-7 --  10.5 
10,7,0 6-3 3.9 3.9 - - 3 . 4  
10,8,0 150 16.3 18.1 18.4 
4,14,0 143 15-9 17-5 16.5 
8,11,0 3.9 2.6 2-6 -- 1.6 
6,13,0 5.3 2-9 2.9 2.7 
12,0,0 71 10.6 11.1 11.3 
12,1,0 169 16.1 18-0 --  18.5 
12,2,0 0 nil  ni l  0.3 
2,15,0 37 7.0 7-2 7-6 
12,3,0 154 13.5 14.9 -- 15.0 
10,9,0 258 16.3 19.0 18.9 
12,4,0 13.4 3.4 3.4 - - 3 . 6  

2"o I 

1"5 

I o~ Ioo I 

- 

o ~) o o oo 
o 

o o 

0 0 - -  

I I I 
4 5  ° 9 0  o 155  ° 

2 0  "--'~ 
180 o 

Fig .  2. E x p e r i m e n t a l  v a l u e s  t i c  o b t a i n e d  w i t h  a s p h e r e  of  
h a m b e r g i t e  for  w h i c h / ~ r =  0.69. T h e  c u r v e  is t h e  t h e o r e t i c a l  
one ,  c a l c u l a t e d  w i t h  C--- 1.1 x 10 -a .  

structure factors for all reflections (HKO). It  is seen 
that  there is very good agreement for small structure 
factors, but that  the calculated values are consistently 
higher for the strong reflections. Agreement for the 
latter cannot be obtained by means of the Darwin 
formula. Fig. 2 plots the actual values of fl(20)C 

resulting from the data of Table 1 (and for other 
strong reflections from the three-dimensional set of 
data), while the curve in Fig. 2 is the theoretical 
curve calculated in accordance with equation (15), 
using the value C--l-1 × 10-~. Conversely, the last 
column of Table 1 gives the corrected F values based 
on the use of equation (15) and the value of C given 
above. 

A least-square refinement based on these corrected 
F values (for the full three-dimensional set of 437 
reflections) gave the low conventional R value of 0.041. 

The standard error for bond lengths attained in the 
last refinement was 0-004 _~ for B-O and Be-O 
bonds, 0.04 _~ for the H-O bond and 0.002 _~ for 
0 - 0  distances. 

The author is indebted to Miss H. A. Plettinger 
and Dr M. Marezio who made the intensity measure- 
ments of Table 1, and to the staff of the IBM 704 
computer at Argonne National Laboratory for help 
with the least-square refinements. 

The work was in part supported by the Advanced 
Research Projects Agency. 
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Note added in proof. ~ The writer  regrets having 
overlooked a paper  by Chandrasekhar  (1960), in which 
it is correctly s ta ted (equation 9) tha t  the proper 
procedure for handling extinction is to take the mean 
integrated reflection for parallel and perpendicular 
components. Thus equation (9) gives the correct for- 
mula for the symmetr ical  Bragg case. 
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Be2BOa(OH ) is orthorhombic with four molecules in a cell of dimensions a = 9.755 A, b = 12.201 /~, 
c =4.426 A. The space group is Pbca with all atoms in general positions. 

The structure has been redetermined with high precision (R =0.04). Bond lengths are: 

B e - 4 0  = 1.633 A, B - 3 0  = 1.367 /~, H-O =0.93 A, H -  . .  O = 2 . 0 4 / ~ .  

Refractive indices calculated from the structure agree well with measured values. 

Introduction 
The approximate crystal structure of the mineral 
hambergite, Be2BO3(OH), was reported thirty years 
ago (Zachariasen, 1931). The original intensity data 
were crude. As a consequence the results as to bond 
lengths were quite inaccurate, and the position of the 
hydrogen atom was assumed rather than deduced 
from experiment. 

It seemed desirable to make a precise determination 
of the hambergite structure using modern techniques 
to measure intensities. In the first place it was of 
interest to obtain accurate values for the Be-O and 
B-O bond lengths. Second, infrared studies had 
indicated a bond angle for hydrogen considerably 
smaller than the 180 ° usually found in the O-H • • • O 
bond. Third, an accurate knowledge of the structure 
could be used to calculate the birefringence of the 
crystal in a situation where the anisotropic com- 
ponents were not all parallel. The results of the 
refinement of the structure are presented in the 
following, together with results of a calculation of the 

refractive indices of the crystal from the refined 
structure. 

The essential features of the 1931 structure deter- 
mination have been confirmed; but there is consider- 
able difference in detail. 

T h e  r e f i n e m e n t  of the  s t r u c t u r e  

New values for the cell dimensions are 

a = 9.755 +_ 0-001, b = 12.201 _+ 0.001, 

c--4.426 _+ 0 .001 /~ .  

The cell contains four molecules, the  space group is 
Pbca, and all a toms are in general  positions. 

The intensit ies were measured with  an  incident 
beam of unpolarized Cu K s  X-rays ,  a proport ional  
counter,  and a crystal  (selected from the original 
Madagascar  material)  shaped into a perfect  sphere of 
radius r - -0 .0314 cm, corresponding ~ r = 0 . 6 9 .  All 
reflections HKO, HK1, HOL, H1L, H2L, OKL, 1KL 
were measured.  

I t  was quickly found there was considerable 
secondary extinction in the  specimen, in spite of 
surface grinding and thermal  shock t r e a t m e n t  in 
liquid nitrogen. In  the early ref inement  stages only 
the weak reflections were therefore used. Since one 
of the objects of the s tudy  was the direct location of 
the hydrogen atom, it  became essential to make  
corrections for secondary ext inct ion in subsequent  
refinements.  I t  was then  found t h a t  the  commonly 
used correction formula was in error (Zachariasen, 
1963), and the  revised equat ion was used in the  
u l t imate  least-square refinement.  

The Busing-Levi IBM-704 program was used with 
the f curves (for neutra l  atoms) given in the Interna- 
tional Tables for X-Ray Crystallography. The init ial  
atomic coordinates were those of the  1931 paper  with 
the  hydrogen a tom placed midway  between two Oiv 
atoms. An isotropic t empera tu re  factor,  with B =  
2-0 •2, was assumed for the hydrogen atom. In  the  
last  ref inements  all (24) position parameters ,  42 
anisotropic the rmal  pa ramete rs  (for all bu t  the  
hydrogen atoms) and 4 scale factors were var ied  
simultaneously.  Only the  final ref inement  included 
extinct ion correction in accordance with the  t rue  


