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1959) only the average-multiple test (Wilson, 1950)
can be applied when the material consists of atoms of
different weights. Moreover, the scope of the latter
test is fairly restricted because it cannot be used to
detect centres of symmetry — except, sometimes,
indirectly — and because it involves types of re-
flexions which are frequently too small in number
to give statistically significant results.

Wherever possible, moment tests — and, indeed,
other statistical tests — should be performed with
three-dimensional (Zkl) reflexions rather than re-
flexions with one or two indices zero. The larger
number of reflexions available permits more reliable
statistical averaging; in addition, the results are less
likely to be seriously influenced by hypersymmetry,
by the overlap of atoms in projection and by the
inadequate statistical averaging which may occur if
a heavy atom happens to fall, in projection, near a
special position.

When present, hypersymmetry invariably increases
the moments of centrosymmetrical structures, but
since statistical tests are usually made on unknown
structures it is, in general, impossible to allow for
hypersymmetry quantitatively.

Overlap may raise or lower moments, depending
upon the space group, but the errors which it intro-
duces are likely to be important only with one-
dimensional data, or two-dimensional data from
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crystals with unit cells containing a small number
of atoms or one very heavy atom.

We should like to thank Prof. H. Lipson for his
continual interest, and he and Mr S. K. Kumra for
making available to us unpublished data on monoclinic
sodium alum.
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The Secondary Extinction Correction

By W. H. ZACHARIASEN
Department of Physics, University of Chicago, U.S. A.

(Recetved 25 February 1963)

It is shown that Darwin’s formula for the secondary extinction correction, which has been univer-
sally accepted and extensively used, contains an appreciable error in the X-ray diffraction case.

The correct formula is derived.

As a first order correction for secondary extinction Darwin showed that one should use an effective
absorption coefficient u +g@ where an unpolarized incident beam is presumed. The new derivation
shows that the effective absorption coefficient is u + 29@Q(1 +cos? 20)/(1 + cos? 26)2, which gives
u+9@Q at 6=0° and 6=90° but u+29Q at 6=45°.

Darwin’s theory remains valid when applied to neutron diffraction.

Introduction

The effect of secondary extinction on the integrated
intensity of X-ray diffraction in mosaic crystals was
first studied in detail by C. G. Darwin (1922), and the
formulas derived by him have been used extensively
throughout the last forty years.

Recently this writer found that the Darwin equa-
tions did not give agreement with precise intensity
measurements. As a consequence a reexamination of
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the theory was undertaken. It was found that the
polarization of the X-ray beams was incorrectly treated
in Darwin’s paper and in all subsequent theoretical
work on secondary extinction. The correct formulas
have been derived and have been found to give
agreement with experiment. Since the new theoretical
treatment of secondary extinction requires significant
modifications of equations in general use, the results
of the reexamination will be given in some detail in
the present article.



1140

1. The ideal mosaic crystal

It is convenient first to review well known results for
X.-ray diffraction in the ideal mosaic crystal. Through-
out the article it will be assumed that all observations
are made in the equator plane, 7.e. the plane containing
directions of incidence and diffraction.

If the incident beam is linearly polarized, one must
specify the polarization angle ¢ which the electric
vector makes with the normal to the equator plane.
For general polarization one needs to know the inten-
sity distribution I¢(@)de, the integral over which
gives the total incident intensity. It is permissible
to resolve the electric vector into normal (¢ =0) and
parallel (¢ =m/2) components and to set for the total
incident intensity JTo=Io(0)+ Io(7/2).

When the incident beam is linearly polarized at
angle @, it follows that Io(0)=1Io cos? ¢ and Io(7/2)=
Iosin2 p. For an unpolarized incident beam Io(0)=
Io(7/2) =410, and when the incident beam is produced
by reflection under a glancing angle §y from a mono-
chromator crystal (in the same equator plane) one has

Io(0) = Ip/(1 +cos? 26y) and
Io(?t/2) = I cos? 20/(1 + cos? 20,).

The total diffracted power, dR(¢p), due to a crystal
of volume 6V, so small that all power losses are neg-
ligible, is

0Ro(p) = Lo(@)Q(p)SV
Qp) = Q(0) {cos? p+sin? ¢ cos? 20}
Qo = Q(0) = |Ne2F/mc?|23/sin 26 . 1)

For an unpolarized incident beam equation (1) takes
the form

0Ro = LoQop16V

p1 = (1+cos?20)/2, (la)
and this equation will be valid also for monochro-
matized incident beams if p; is replaced by p;, where

1= (14 cos? 26, cos? 20)/(1 +cos? 26p) .  (15)

Power losses due to diffraction are by definition
negligible in the ideal mosaic crystal. Integrating
equation (1) and taking account of ordinary absorption
one finds

Ro(p) = Lo()Q(p) VA (u)
Ap) = V-1 5 exp [—u(T1+T2)1dV. )

V is the irradiated volume of the crystal, and 4 is
the transmission factor. For an unpolarized incident
beam
Ro=I0QoVAp: (2a)
where p1 must be replaced by p, if a monochromator
is used.
It is useful to list the specific form of equation (2a)
for symmetrical diffraction by a plane parallel plate
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of thickness 7' which completely covers the incident
beam. These equations are:

Laue case
Ro=Po@Qop:1T exp (—uT)
T =To/cos 6, (2b)
Bragg case, uTo > 1
R0=P0Q0p1/2# s (2¢)

where Po=S8I, is the total power of the incident
beam, S being its cross section.

2. Secondary extinction

The equations given in § 1 are obviously approxima-
tions since the X-ray beams in traversing the crystal
must lose some power through the diffraction process.

In part A of this section the exact solution to the
diffraction problem in a plane parallel plate will be
given, while in part B an approximate solution will
be derived for the general case of arbitrary crystal
shape.

Let W(A) be the distribution function which charac-
terizes the misalignment of the mosaic blocks in the
crystal specimen, A being the angular deviation from
the mean. The considerations will be restricted to the
case of small secondary extinction, implying that the
width of W is large compared to the width of the
diffraction peak for a single mosaic block.

Suppose that the incident direction makes a sharply
defined glancing angle 6 with the mean orientation
of a lattice plane for which the ideal Bragg angle
is 05. The expectation value for the power diffracted
by a volume element is then

4P(0, ) =Io()o(p, )4V

where P and I, are measured at the volume element.

2A. The plane parallel plate

The diffraction problem for the plane parallel plate
was investigated and solved by C. G. Darwin (1922).
A somewhat different derivation, which led to identical
results, was later made by this writer (Zachariasen,
1945). However, both of these workers made the same
error in taking account of the polarization of the
incident beam.

The derivation to follow will adhere closely to that
previously given by the writer, except that the error
will be corrected and the notation modified. (The
symbols yo, T, Py, P of the earlier work correspond
to the quantities o(p), y7', Po(p), P(p) as used in the
present article. A prefix Z is used in references to
equations given in the earlier publication.)

The equations which Po(p, T) and P(p, T) must
satisfy are (see Z4-21)

dPo= —[p+ o(p)1PodT + o(¢')PdT
dP = F[pu+ o(9')]PdT + o(p)PodT. (4)
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In these equations T is the distance of travel of the
incident beam into the crystal. The upper sign refers
to Laue and the lower sign to Bragg reflection. The
terms involving o(¢’) correspond to diffraction of the
diffracted beam, so that ¢ and ¢’ are related as follows

cos @’ = cos ¢/[cos? ¢ +sin? p cos? 207%. (5)

Thus ¢'=¢ only when ¢=0 or /2, i.e. for normal
or for parallel linear polarization of the incident
beam.
Equations (5) have been solved exactly for the
case ¢’ =¢ (see Z4-24-30), and these solutions are:
Laue case

P=Pyexp[—(u+ 0)T]sinh (¢T),
P=PoT exp (—uT)[o—o®T+ 26372+ ...1,
T'=To/cos 0, (6)

Bragg case, uTo > 1

P=Po[u+o—{(u+0)2—0a?]o,
P=Po2u)t[o—0?2u+503/8u2+...]. (7)

It must be remembered that P, Py, ¢ in equations
(6) and (7) refer either all to ¢=0, or all to p=m/2,
and that ¢ is a function of 6§, o having appreciable
value only for § ~ 05.

It is convenient to use new symbols R, g», p» and
py, defined as follows

R = Pd(0—0s), gu=\Wrd(6—0s),
P = (14 cos2r 20)/2 ,
Pr = (14 cos? 26 cos2® 26)/(1 + cos? 20o) (8)

where one notes that g; =1, and that p; and p, agree
with previous definitions.

Integration of equations (6) and (7) and addition
of normal and parallel components give as result

R/Po:Ro/Po[l —ocz(Ro/Po)+(X3(Ro/P0)2+ . .] . (9)

Ro/Py are the quantities given by equations (2b) and
(2¢) while

Laue case Bragg case
az= ga(pe/p}) exp (uT) 2g2(p2/pl)
xa=  (§)ga(ps/p}) exp 2uT)  5gs(ps/pi) - (9a)

For the monochromator case p, everywhere replaces
Pn in the above equations.

The previous treatments by Darwin and this writer
gave the results of equation (9a) if one sets po/pi=
ps/p3=1. However, this is not permissible for p/p}
increases from 1 at 20=0 to 2 at 20 =x/2, ps/p? from
1 to 4.

2B. Arbitrary crystal shape

In the following an approximate solution, good to
the first order correction term, will be given for a
crystal of any shape. The approximation to be made
is this: for X-ray beams traversing the crystal power
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losses due to absorption and diffraction are considered,
but power gains from double diffraction are neglected.
It is thus assumed that

dPo(p)= —[p+ o(g)]PedT
dP(p) = —[u+a(e")]PdT .

In other words terms in ¢2 are neglected.

If the considerations are restricted to either normal
or parallel linear polarization, the integration of
equations (10) gives

(10)

P=ILoVA(u+o). (11)
In the X-ray case p > ¢ so that
A(p+o)~ A+aoddldu . (12)

where it is senseless to include quadratic terms since
in equation (10) such terms were neglected.

Integration of equation (11) and addition of normal
and parallel components give

R/Io % Ro/]o[l —(X_Ro/l()]
x=8"1axe=ga(pe/p)V1dA*|dp . (13)

Ro/Io is given by equation (2a), A¥=A-1 is the
absorption factor, and § is the cross section of that
part of the incident beam which falls on the crystal.
Again p, replaces pn if a monochromator is used.

It is readily verified that equation (13) correctly
gives equations (9) (to the first order expansion terms)
when applied to a plane parallel plate.

Letting @=0Qp: equation (13) can be rewritten in
the form

R = IQVA(u') (13a)

u = pu+ga(pe/p})@Q (13b)

where equation (13b) is the correct form for the old
Darwin relation u'=u + g2@Q.

Since intensity measurements are usually made on
relative rather than absolute scale, it is useful to use
equation (13) in the form

Feorr ~ KFo‘os[l + /3(26)0']0118] . (14)

Fops is the observed structure factor, Feorr the value
corrected for secondary extinction, and Jgps the
observed integrated intensity on arbitrary scale.
K and C are scale factors to be adjusted, while 5(26)
takes account of the angular variation of the extinc-
tion correction and is assumed to be normalized to
unity at 26=0.

For an unpolarized incident beam the expression
for f(20) is

pag) = 21+ cost 260) 4*(20)

(1+cos226)2 A% (0)

(15)

where A*'(20) is the value of dA*(du at 26 and
A*(0) the value at 26=0.

When a monochromator is used the expression for
f(20) becomes



1142

(14 cos? 200) (1 4 cos? 20 cos? 20) A*'(26)
(1 + cos? 260 cos? 20)2 A4%(0) °
(15a)

p'(26) =

2:00— -1

1-50 —

oo
B

0-50

0 | ]
45° 90° 135° 180°

26—

Fig. 1. Variation of 8 with scattering angle for a crystal sphere
of radius 7, for selected values of ur.

Fig. 1 shows B as function of the scattering angle
for a crystal sphere of radius 7 bathed in the incident
beam for various values of ur. It is clearly illustrated
that one cannot regard § as independent of scattering
angle, as is usually assumed. For large values of ur
for a crystal sphere one has B(0)/f(m)=3§ (ur)>

Equation (14) is probably a good approximation
even for BCJ ~ 1, at small scattering angles and small
values of ur or uTo.

Consider the Laue and Bragg cases for which the
second order correction terms have been given.
Inversion of equation (9) gives

Ro/Po~ R/Po[1+x2(R/Po) + (205 —x3) (R Po)?]. (18)

Under the stated conditions one finds:

Laue case
Ro/Po ~ R|Po[1+g2R/Po+(293—3gs) (R|Po)?] . (17)
Bragg case
Ro/Po ~ R|Po[1+2g2R[Po+ (895 —5¢s) (R[Po)?] . (18)
The approximation
Feorr ~ Fovs[1 +CJ] (19)

(note that B~ 1 for small 26 and u7) is thus good to
second order if the brackets on the right of equations
(17) and (18) are perfect squares. This requires

gs=g221/16 =1-31g2
ga=g2 T/5 =1-40g%.  (20)

It is reasonable to suppose that W(A) is an error
function, and if so by equation (8), g3 =¢32(3)~* =1-15¢3.
Thus the conditions of equation (20) are nearly
fulfilled, and it appears that equation (19) can be
used with some confidence even when CJ~ 1.
Hamilton (1957) has made a detailed study of the
effect of crystal shape on secondary extinction and

Laue case
Bragg case
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outlined a practical method for numerical solution
of the problem. In the approximate solution of this
paper the crystal shape effect is contained in the term
dA*/du of equation (13). Hamilton’s results are valid
for neutron diffraction; but in the case of X-ray
diffraction the normal and parallel components must
be considered separately and the components added
at the end of the process. Thus the modifying factors
pa/p} will again enter, although implicitly.

3. Experimental verification of the
new formula

Experiments by the Manchester school of crystallo-
graphers during the nineteen twenties supposedly
confirmed the Darwin formula for secondary extinc-
tion which is now known to be in error. (A good
survey of this work is given by James, 1950.) How-
ever, in the Manchester experiments intensities were
measured with adequate precision only at small
scattering angles, so that no real test was made of a
possible dependence of the extinction coefficient on
scattering angle.

The new formula for secondary extinction derived
in this paper ought to be checked by means of ex-
periments carefully designed for this very purpose.
This has not yet been done.

However, it was related in the introduction that
the reexamination of the theory of secondary extine-
tion was undertaken because discrepancy was observed
between Darwin’s formula and experimental results.
The specific case of disagreement was the set of
carefully measured integrated intensities for a crystal
of Be2aBO3(OH), the mineral hambergite.

This crystal is of great hardness, so that the thermal
intensity attenuation is small. The intensities were
measured with a proportional counter, Cu K« radia-
tion with unpolarized incident beam and a perfect
crystal sphere for which ur=0-69. Under the circum-
stances strong reflections were observed over the
entire scattering range. It was quickly apparent that
there was considerable secondary extinction in the
specimen in spite of surface grinding and thermal shock
treatment in liquid nitrogen.

A very precise determination was made of the 24
positional degrees of freedom in the structure and of
the 42 thermal parameters (the anisotropic coefficients
for all but the hydrogen atoms) by means of least-
square refinements based on the weak reflections for
which secondary extinction is negligible. The structure
factors corresponding to strong reflections, which
were not used in the refinement, could thus be cal-
culated with high accuracy. It was found, however,
that the application of a secondary extinetion correc-
tion to the strong reflections in accordance with the
Darwin formula led to discrepancies of systematic
nature.

Table 1 gives the observed integrated intensities
(on arbitrary scale), the experimental and calculated
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Table 1. HKO reflections

HKO Jobs Fobs Feorr KFcae
020 36 4-8 5-G —4-6
200 44 59 6-2 55
210 458 20-0 30-1 —30'5
220 976 320 66-3 —61-7
230 1034 36-8 78-8 —74-1
040 489 257 39-5 —40-7
240 229 19-4 24-2 —238
400 196 18-7 22-7 —22-3
410 687 35-4 62-2 —62-1
420 97 13-8 15-2 —14-4
250 314 25-4 34-2 —31-9
430 101 14-8 16-5 15-0
060 211 21-8 26-9 25-9
440 316 27-9 37-7 37-0
260 46 10-8 11-3 10-4
450 445 353 54-3 51-9
270 192 24-0 29-8 28-2
600 106 18-0 20-4 20-5
610 91 16-8 18-8 —18-3
620 109 18-7 21-3 —21-1
460 64 14-4 15-6 14-8
080 314 32-3 45-8 —46-7
630 72 15-6 17-1 16-2
280 13-5 6-9 7-0 —6-1
470 13-7 7-2 7-3 6-3
640 132 21-9 26-0 25-3
650 15-2 7-7 7-9 —17-2
290 0-3 1-2 1-2 1-2
480 172 26-6 33-8 — 337
660 287 34-7 50-7 51-4

0,10,0 130 23-8 28-7 29-7
800 0-6 1-6 1-6 1-9
810 50 14-9 16-1 16-4
820 12-8 7-5 7-7 —175
670 272 34-8 50-9 —50-6
490 182 28-4 37-2 37-6

2,10,0 167 27-3 35-1 353
830 129 24-1 29-4 30-9
840 71 17-9 20-1 —20-8
680 99 21-3 24-9 —24-9

20 T T T

0 I i |
45° 90° 135°
260 —

180°

Fig. 2. Experimental values fSC obtained with a sphere of
hambergite for which ur=0-69. The curve is the theoretical
one, calculated with C=1-1x 103,

structure factors for all reflections (HKO0). It is seen
that there is very good agreement for small structure
factors, but that the calculated values are consistently
higher for the strong reflections. Agreement for the
latter cannot be obtained by means of the Darwin
formula. Fig.2 plots the actual values of £(20)C
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HKO Jobs Fops Feorr KFoae
4,10,0 20-8 9-7 10-0 —-9-7
850 5-1 4-8 4-8 —45
2,11,0 147 25-8 32-2 —35-1
860 49 14-8 15-9 —16-0
690 2:0 3-0 3-0 2-7
0,12,0 0-6 1-7 1-7 1-3
4,11,0 1-1 2-2 2:2 —1-6
870 64 16-5 181 —18-8
2,12,0 0-1 0-7 0-7 0-3
6,10,0 30-1 11-1 11-5 —11-9
10,0,0 36-1 12-1 12:7 12-3
10,1,0 74 17-3 19-0 —19-0
10,2,0 54 14-6 15-7 15-9
880 0-2 0-9 0-9 0-8
10,3,0 1-0 2-0 2:0 1-3
4,12,0 4-7 4-2 4-2 —35
10,4,0 18-3 8-1 8-3 —8-0
2,13,0 19-7 8:3 85 — 86
6,11,0 13-4 6-8 6-9 6-4
890 2-5 2-9 2:9 —2-2
10,5,0 44 12-0 12-5 12-5
10,6,0 85 156 16-9 —17-0
4,13,0 85 15-4 16-7 —17-0
0,14,0 376 32-0 43-1 —43-8
8,10,0 62 12-7 13-5 13-5
6,12,0 0-1 0-6 0-6 0-5
2,14,0 43 10-3 10-7 —10-5
10,7,0 6-3 39 39 —34
10,8,0 150 16-3 181 18-4
4,14,0 143 15-9 17-5 16-5
8,11,0 39 2-6 2-6 —1-6
6,13,0 5-3 2-9 2-9 27
12,0,0 71 10-6 11-1 11-3
12,1,0 169 16-1 18-0 — 185
12,2,0 0 nil nil 0-3
2,15,0 37 7-0 7-2 7-6
12,3,0 154 13-5 14-9 —15-0
10,9,0 258 16-3 19-0 189
12,4,0 13-4 34 34 —36

resulting from the data of Table 1 (and for other
strong reflections from the three-dimensional set of
data), while the curve in Fig.2 is the theoretical
curve calculated in accordance with equation (15),
using the value C'=1-1x10-3. Conversely, the last
column of Table 1 gives the corrected F values based
on the use of equation (15) and the value of C given
above.

A least-square refinement based on these corrected
F values (for the full three-dimensional set of 437
reflections) gave the low conventional R value of 0-041.

The standard error for bond lengths attained in the
last refinement was 0004 A for B-O and Be-O
bonds, 0-04 A for the H-O bond and 0002 A for
0-0 distances.

The author is indebted to Miss H. A. Plettinger
and Dr M. Marezio who made the intensity measure-
ments of Table 1, and to the staff of the IBM 704
computer at Argonne National Laboratory for help
with the least-square refinements.

The work was in part supported by the Advanced
Research Projects Agency.
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Note added in proof.— The writer regrets having
overlooked a paper by Chandrasekhar (1960), in which
it is correctly stated (equation 9) that the proper
procedure for handling extinction is to take the mean
integrated reflection for parallel and perpendicular
components. Thus equation (9) gives the correct for-
mula for the symmetrical Bragg case.

Acta Cryst. (1963). 16, 1144

THE SECONDARY EXTINCTION CORRECTION

References

CHANDRASEKHAR, S. (1960). Advances in Physics, 9, 363.

Darwin, C. G. (1922). Phil. Mag. 43, 800.

HawmirroN, W. C. (1957). Acta Cryst. 10, 629.

James, R. W. (1950). The Optical Principles of the Dif-
fraction of X-Rays. London: Bell.

ZACHARIASEN, W, H. (1945). Theory of X -Ray Diffraction
in Crystals., New: York Wiley.

The Structure and Birefringence of Hambergite, Be,BO,. OH

By W.H. ZacHARIASEN, H. A. PLETTINGER AND M. MAREZIO

Department of Physics, Untversity of Chicago and Argonne National Laboratory, U.S. A.

(Received 25 February 1963)

Be,BO,(OH) is orthorhombic with four molecules in a cell of dimensions o =9-755 A, b=12-201 A,
¢=4-426 A. The space group is Pbca with all atoms in general positions.
The structure has been redetermined with high precision (R =0-04). Bond lengths are:

Be-40=1633 4, B-30=1367 A, H-0=093 A, H---0=204 A .

Refractive indices calculated from the structure agree well with measured values.

Introduction

The approximate crystal structure of the mineral
hambergite, BeaBO3(OH), was reported thirty years
ago (Zachariasen, 1931). The original intensity data
were crude. As a consequence the results as to bond
lengths were quite inaccurate, and the position of the
hydrogen atom was assumed rather than deduced
from experiment.

It seemed desirable to make a precise determination
of the hambergite structure using modern techniques
to measure intensities. In the first place it was of
interest to obtain accurate values for the Be-O and
B-O bond lengths. Second, infrared studies had
indicated a bond angle for hydrogen considerably
smaller than the 180° usually found in the O-H - - - O
bond. Third, an accurate knowledge of the structure
could be used to calculate the birefringence of the
crystal in a situation where the anisotropic com-
ponents were not all parallel. The results of the
refinement of the structure are presented in the
following, together with results of a calculation of the
refractive indices of the ecrystal from the refined
structure.

The essential features of the 1931 structure deter-
mination have been confirmed; but there is consider-
able difference in detail.

The refinement of the structure
New values for the cell dimensions are

@=9755 + 0-001, b=12-201 + 0-001,
c=4-426 + 0-001 A .

The cell contains four molecules, the space group is
Pbca, and all atoms are in general positions.

The intensities were measured with an incident
beam of unpolarized Cu Kx X-rays, a proportional
counter, and a crystal (selected from the original
Madagascar material) shaped into a perfect sphere of
radius 7=0-0314 cm, corresponding ur=0-69. All
reflections HKO, HK1, HOL, H1L, H2L, OKL, 1KL
were measured.

It was quickly found there was considerable
secondary extinction in the specimen, in spite of
surface grinding and thermal shock treatment in
liquid nitrogen. In the early refinement stages only
the weak reflections were therefore used. Since one
of the objects of the study was the direct location of
the hydrogen atom, it became essential to make
corrections for secondary extinction in subsequent
refinements. It was then found that the commonly
used correction formula was in error (Zachariasen,
1963), and the revised equation was used in the
ultimate least-square refinement.

The Busing-Levi IBM-704 program was used with
the f curves (for neutral atoms) given in the Interna-
tional Tables for X-Ray Crystallography. The initial
atomic coordinates were those of the 1931 paper with
the hydrogen atom placed midway between two Oiv
atoms. An isotropic temperature factor, with B=
2-0 A2, was assumed for the hydrogen atom. In the
last refinements all (24) position parameters, 42
anisotropic thermal parameters (for all but the
hydrogen atoms) and 4 scale factors were varied
simultaneously. Only the final refinement included
extinction correction in accordance with the true



